Scientists set to cure genetic heart conditions that cause sudden death

·4-min read

Scientists have said they are just a few years away from curing genetic heart conditions which affect around 260,000 people in the UK and can cause sudden death.

An international team of researchers is coming together for cutting-edge science after being awarded £30 million by the British Heart Foundation (BHF).

They will develop the first cures for inherited heart muscle diseases by rewriting DNA with the aim of editing or silencing faulty genes.

The hope is that within just a few years a “cure” injection can be delivered to patients as a jab in the arm, and could be used to prevent illness in family members who carry the same faulty gene.

Inherited heart muscle conditions are driven by different abnormalities in the heart but can cause sudden death or progressive heart failure.

Every week in the UK, 12 people under the age of 35 die of an undiagnosed heart condition, very often caused by an inherited heart muscle disease, also known as genetic cardiomyopathy.

All those with genetic cardiomyopathies have a 50-50 risk of passing faulty genes on to each of their children and, often, several members of the same family develop heart failure, need a heart transplant, or die at a young age.

Cardiomyopathies often hit the headlines when they result in sudden cardiac death in young athletes and football players.

The condition nearly claimed the life of footballer Fabrice Muamba when he was playing for Bolton in 2012.

The team behind the new research, who are all leading scientists from the UK, US and Singapore, were selected by an advisory panel chaired by Professor Sir Patrick Vallance, the Government’s chief scientific adviser.

Professor Hugh Watkins, from the University of Oxford and lead investigator of the CureHeart project, said cardiomyopathies are “really common” and affect one person in every 250.

“There will be one or two in every school,” he told a briefing. “Every GP surgery will have several patients with these conditions, but there’s quite a range of severity.”

He said not all patients would require the new therapy being proposed, but “a very large number” would benefit.

He added: “This is our once-in-generation opportunity to relieve families of the constant worry of sudden death, heart failure and potential need for a heart transplant.

“After 30 years of research, we have discovered many of the genes and specific genetic faults responsible for different cardiomyopathies, and how they work. We believe that we will have a gene therapy ready to start testing in clinical trials in the next five years.”

Under the new programme of research, experts hope to permanently correct or silence mutant genes involved in causing these heart problems.

They will also look at replenishing the inadequate protein supply that happens when a gene does not work properly.

Christine Seidman, professor of medicine at Harvard Medical School in the US and co-lead of the CureHeart project, said the idea is to “fix the hearts” and revert them to more normal function.

She said: “Most of the mutations that we find in our human patients – and while there are vast numbers of them (mutations) – they all frequently will alter one single letter of the DNA code.

“That has raised the possibility that we could alter that one single letter and restore the code so that it is now making a normal gene, with normal function.”

She said some “very elegant chemistry” has already advanced this field of science, adding: “Our goals are to fix the hearts, to stabilise them where they are and perhaps to revert them back to more normal function.

“We may be able to deliver these therapies in advance of disease, in individuals we know from genetic testing are at extraordinary risk of having disease development and progressing to heart failure.

“Never before have we been able to deliver cures, and that is what our project is about. We know we can do it and we aim to get started.

“With our ability to show this, we think there is an extraordinary opportunity to extend these therapies to many other forms of heart disease.”

The team will use precision genetic techniques, called base and prime editing, in the heart for the first time.

Animal studies have already shown the techniques work.

Professor Sir Nilesh Samani, medical director at the BHF, said: “This is a defining moment for cardiovascular medicine.”

Our goal is to create a safe and engaging place for users to connect over interests and passions. In order to improve our community experience, we are temporarily suspending article commenting